Exercise 9

Differentiate both sides of the following equations:

$$
x^{3}+\frac{1}{6} x^{6}=\int_{0}^{x}(4+x-t) u(t) d t
$$

Solution

Differentiating both sides of the equation with respect to x gives us

$$
3 x^{2}+x^{5}=4 u(x) \cdot 1-(4+x) u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x}(4+x-t) u(t) d t
$$

where we used the Leibnitz rule to differentiate the integral. Therefore,

$$
3 x^{2}+x^{5}=4 u(x)+\int_{0}^{x} u(t) d t
$$

